Temperature Dependence of Charge Separation and Recombination in Porphyrin Oligomer–Fullerene Donor–Acceptor Systems
نویسندگان
چکیده
Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C(60) were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C(60) followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (ii) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (λ). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C(60)-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.
منابع مشابه
Photoinduced electron transfer in a b,b0-pyrrolic fused ferrocene–(zinc porphyrin)–fullerene
A donor–acceptor linked triad with a short spacer (Fc-ZnP-C60) 1 was designed and synthesised to attain the longest charge-separation lifetime, 630 ms, ever reported for triads at room temperature. The ferrocene electron donor and fullerene electron acceptor of triad 1 are attached to imidazole rings fused to opposite b,b0-pyrrolic positions of the zinc porphyrin. After excitation of the porphy...
متن کاملThrough-bond photoinduced electron transfer in a porphyrin-fullerene conjugate held by a Hamilton type hydrogen bonding motif.
Control over the occurrence of through-bond electron transfer in self-assembled donor-acceptor conjugates is often difficult, since through-space electron transfer also competes due to the flexible nature of the spacer used to link the entities. In the present study, we have constructed a self-assembled donor-acceptor conjugate held solely by complementary hydrogen bonding and established throu...
متن کاملPhotoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems.
A new series of multi-modular donor-acceptor systems capable of exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques. In this series, the electron donor was a BF2-chelated dipyrromethene (BODIPY) appended with two styryl linkers carrying two electron rich triphenylamine or phenothiazine entities. Fulleropyrrolidine linked at the me...
متن کاملOn the energetic dependence of charge separation in low-band-gap polymer/fullerene blends.
The energetic driving force required to drive charge separation across donor/acceptor heterojunctions is a key consideration for organic optoelectronic devices. Herein we report a series of transient absorption and photocurrent experiments as a function of excitation wavelength and temperature for two low-band-gap polymer/fullerene blends to study the mechanism of charge separation at the donor...
متن کاملUltrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches
Photochemical electron transfer reactions on a picosecond time scale have been studied in two covalently-linked donor-acceptor systems. The first molecule is a chlorophyll-porphyrin-quinone triad that closely mimics photosynthetic charge separation by undergoing picosecond electron transfer in low temperature glasses to yield a radical ion pair that lives for 2 ms and exhibits spin-polarization...
متن کامل